Class/Object

org.apache.spark.mllib.feature

MDLPDiscretizer

Related Docs: object MDLPDiscretizer | package feature

Permalink

class MDLPDiscretizer extends Serializable with Logging

Entropy minimization discretizer based on Minimum Description Length Principle (MDLP) proposed by Fayyad and Irani in 1993 [1].

[1] Fayyad, U., & Irani, K. (1993). "Multi-interval discretization of continuous-valued attributes for classification learning."

Linear Supertypes
Logging, Serializable, Serializable, AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. MDLPDiscretizer
  2. Logging
  3. Serializable
  4. Serializable
  5. AnyRef
  6. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Value Members

  1. final def !=(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  3. final def ==(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  4. final def asInstanceOf[T0]: T0

    Permalink
    Definition Classes
    Any
  5. def clone(): AnyRef

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  6. val data: RDD[LabeledPoint]

    Permalink

    RDD of LabeledPoint

  7. final def eq(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  8. def equals(arg0: Any): Boolean

    Permalink
    Definition Classes
    AnyRef → Any
  9. def finalize(): Unit

    Permalink
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  10. final def getClass(): Class[_]

    Permalink
    Definition Classes
    AnyRef → Any
  11. def hashCode(): Int

    Permalink
    Definition Classes
    AnyRef → Any
  12. final def isInstanceOf[T0]: Boolean

    Permalink
    Definition Classes
    Any
  13. def isTraceEnabled(): Boolean

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  14. def log: Logger

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  15. def logDebug(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  16. def logDebug(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  17. def logError(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  18. def logError(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  19. def logInfo(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  20. def logInfo(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  21. def logName: String

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  22. def logTrace(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  23. def logTrace(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  24. def logWarning(msg: ⇒ String, throwable: Throwable): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  25. def logWarning(msg: ⇒ String): Unit

    Permalink
    Attributes
    protected
    Definition Classes
    Logging
  26. final def ne(arg0: AnyRef): Boolean

    Permalink
    Definition Classes
    AnyRef
  27. final def notify(): Unit

    Permalink
    Definition Classes
    AnyRef
  28. final def notifyAll(): Unit

    Permalink
    Definition Classes
    AnyRef
  29. def runAll(contFeat: Option[Seq[Int]], elementsByPart: Int, maxBins: Int): DiscretizerModel

    Permalink

    Run the entropy minimization discretizer on input data.

    Run the entropy minimization discretizer on input data.

    contFeat

    Indices to discretize (if not specified, the algorithm try to figure it out).

    elementsByPart

    Maximum number of elements to keep in each partition.

    maxBins

    Maximum number of thresholds per feature.

    returns

    A discretization model with the thresholds by feature.

  30. final def synchronized[T0](arg0: ⇒ T0): T0

    Permalink
    Definition Classes
    AnyRef
  31. def toString(): String

    Permalink
    Definition Classes
    AnyRef → Any
  32. final def wait(): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  33. final def wait(arg0: Long, arg1: Int): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  34. final def wait(arg0: Long): Unit

    Permalink
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )

Inherited from Logging

Inherited from Serializable

Inherited from Serializable

Inherited from AnyRef

Inherited from Any

Ungrouped